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Abstract
Offline safe reinforcement learning (RL) aims to learn a safe and relatively rewarding policy with a
precollected dataset. One prevalent method to deal with this problem is offline policy-regularized
method, which typically incorporates a behavior cloning mechanism into the policy learning to
regularize the learned policy stay close enough to the behavior policy, hence mitigates the distribution
shift challenge. However, this framework may suffer from suboptimality of behavior policy due to
the imbalanced dataset. In this work, we propose DIAM (distribution aligned sampling), a preference
aligned sampling method customized for policy-regularized offline safe algorithms. Comprehensive
evaluation in various tasks illustrates the ability of DIAM in optimizing the behavior policy, hence
benefits policy-regularized offline safe algorithms. DIAM shows superiority compared to other
model-centric method and data-centric method, making it more applicable and universal, even with
simple structure.
Keywords: Safe Reinforcement Learning, Policy-regularized Offline RL, Data-centric method

1. Introduction
Offline Reinforcement Learning (RL) focuses on learning high-reward policies from pre-existing
datasets, a topic that has gained significant attention and shown great promise across various applica-
tions (Chen et al., 2021; Levine et al., 2020). This approach aims to leverage as much information
as possible from collected trajectories while avoiding distribution shift (Fu et al., 2020; Kostrikov
et al., 2021). Despite its success, real-world tasks often require more than simply maximizing a
scalar reward function due to numerous constraints that limit feasible solutions (Gulcehre et al.,
2020). Ensuring safety and satisfying constraints is particularly crucial for deploying RL algorithms
in practical scenarios (Kim et al., 2022; Lu et al., 2023; Chen et al., 2023), such as autonomous
driving (Sun et al., 2020; Lu et al., 2023) and robotics (Zhao et al., 2023; Ding et al., 2024).
Offline Safe RL, which aims to learn a relative rewarding policy within a constrained manifold (Gar-
cıa and Fernández, 2015; Brunke et al., 2022), has shown its strength in achieving safe and robust
objectives in applications (Gu et al., 2022). Several frameworks and techniques have been proposed
to deal with offline safe RL problems, including stationary DIstribution CorrEction (DICE) family
methods (Lee et al., 2022) which trains the policy by sampling state-action pairs with importance,
and sequential based method which adapts the trained policy to different constraint thresholds (Liu
et al., 2023b; Lin et al., 2023).
Policy-regularized offline safe RL is another prevalent framework to deal with offline safe RL, which
typically integrates behavior cloning into policy learning to ensure the learned policy remains close
to the behavior policy with a policy regularizer to manage shift (Fujimoto et al., 2019; Kumar et al.,
2019a; Xu et al., 2022). However, Recent Policy-regularized offline safe RL may fail catastrophically
if the behavior policy of the dataset is suboptimal: either too conservative or unfeasible due to the
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violation of the safety constraint. Recent works (Hong et al., 2023a,b) show the ability of dataset
reweighting in offline RL, but as far as we know, the ability of such method under safe RL remains
unknown.
In this paper, we focus on data-centric method in improving the performance of offline policy-
regularizd safe RL algorithms. We propose DIAM (distribution aligned sampling), which computes
the sampling weights of the dataset by solving an optimization oracle, specially designed for offline
safe RL. We summarize the contribution of our contribution as follows:

• We study the suboptimality of behavior policy derived from the dataset. Our results show that
suboptimality of behavior policy causes failure of Policy-regularizer in offline safe algorithms,
hence affects algorithm performance.

• We propose DIAM, which is a data-centric method compatible with extensive policy regular-
ized safe offline algorithms and can be computed without additional computation cost.

• We conduct comprehensive experiment to illustrate the superiority of DIAM. We compare
DIAM with both model-centric baselines and data-centric baselines under varying tasks and
datasets.

2. Related Work
Safe RL. Safe RL is often introduced as a constrained optimization problem, which focuses on
maximizing the reward within the cost threshold (Garcıa and Fernández, 2015; Achiam et al., 2017;
Zhang et al., 2020; Kim et al., 2024). One prevalent problem setting is online training, where the
agent is able to interact with th nominal environment directly (Chow et al., 2017; Tessler et al.,
2018; Wu et al., 2024). In order to learn a safe and relatively rewarding policy, Lagrangian-based
methods apply a multiplier to penalize violations on constraint (Stooke et al., 2020; Chow et al.,
2017), while variational inference based methods estimate optimal penalty multiplier directly (Liu
et al., 2022a; Huang et al., 2022). Another prevalent problem setting is offline training, which focuses
on training on a fixed dataset without interaction with the environment (Ernst et al., 2005). Besides
policy-regularized algorithms, stationary DIstribution CorrEction (DICE)-style methods (Lee et al.,
2022) which trains the policy by importance sampling and sequential modeling methods (Liu et al.,
2023b; Guo et al., 2024) are two widely used approaches.
Policy-regularized Offline Safe RL. A significant challenge in offline RL is managing the dis-
tribution shift between state-action pairs in the dataset and those from the learned policy (Levine
et al., 2020). Policy regularization (Fujimoto et al., 2019; Kumar et al., 2019a; Xu et al., 2022)
emerges as a straightforward and effective solution. This technique integrates behavior cloning within
policy learning to ensure the learned policy remains close to the behavior policy. BCQ (Fujimoto
et al., 2019) uses a conditional variational auto-encoder to model behavior policies and develops a
perturbation model for bounded action adjustments. BEAR (Kumar et al., 2019b) employs maximum
mean discrepancy to regularize the policy, estimated through multiple samples from both the learned
and behavior policies. CPQ (Xu et al., 2022) estimates Q-function in a conservative perspective with
policy regularizer managing distribution shift.
Dataset Reweighting. Dataset reweighting is a possible approach to formulate different dataset dis-
tribution which assigns each data point with customized weight when sampling. Hong et al. (2023a)
first proposed to sample through applying more weights on more rewarding trajectory-wise data
point, with an entropy regularization term reducing variance. Hong et al. (2023b) further assigned
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weights by solving optimization oracle on each (s, a)-pairs to obtain a more sophisticated sampling
method design. Yao et al. (2024a) first applied reweighting method in offline safe RL setting.

3. Problem Formulation
In this section, we introduce the framework of Offline safe reinforcement learning with regularization.

3.1. Constrained Markov Decision Process

The Constrained Markov Decision Process (CMDP) M is defined by the tuple (S,A,P, r, c, µ0)
(Altman, 1998), where S is the state space, A is the action space, P : S × A × S −→ [0, 1] is the
transition function, r : S × A × S −→ R is the reward function, and µ0 : S −→ [0, 1] is the initial
state distribution. Compared to traditional MDPs, CMDPs consider MDP with an additional element
c = {ci : S × A × S −→ R, i = 1, 2, 3...N} to capture the violation cost through the constrains,
where N is the cost dimension. A safe RL problem with multi-constrains is specified by a CMDP and
constraint threshold κi ∈ R≥0. Let π : S ×A → [0, 1] denote the policy and τ = {s1, a1, ...} denote
the trajectory. The trajectory-wise reward returns and cost returns are defined as R(τ) =

∑
τ r,

and the cost returns Ci(τ) =
∑

τ ci, i = 1, 2, ...N . which is the expectation of discounted return
under the policy π and the initial state distribution µ0. The goal of the safe RL problem with
multi-constrains is to find the policy that maximizes the reward return while constraining the cost
return under the pre-defined threshold κi:

π∗ = argmax
π

Eτ∼π[R(τ)], s.t. Eτ∼π[Ci(τ)] ≤ κi, i = 1, 2, 3...N (1)

3.2. Offline Safe RL with Regularization

In this report, we focus on the offline safe RL with multi-constrain, where the agent can only access
to a precollected dataset D = {τ1, ...τN}, where D is collected by a behavior policy πB . Due to
the Distribution shift (Kostrikov et al., 2021) challenge in offline RL, which refers to the poor
generalization ability of the agent when facing the OOD situations (Lin et al., 2024), we often
introduce a regularization penalty term to alleviate the OOD issue (Yao et al., 2024a), that is, the
constrained safe RL problem is converted to:

π∗
r = argmax

π
Eτ∼π[R(τ)]− wL(π, πB), s.t. Eτ∼π[Ci(τ)] ≤ κi, i = 1, 2, 3...N, (2)

where w > 0 is a constant weight, L(π, πB) is a regularization distance. In practice, the regularization
is often chosen as MSE or evidence lower bound regularization (Yao et al., 2024a). In order to solve
the problem in Eq.(2), the most common way is to convert the multi-constrain optimization problem
into dual form by the lagrange method (Liu et al., 2023b):

(π∗
r ,λ

∗) = argmax
λ

min
π

N∑
i=1

λi (Eτ∼πCi(τ)− κi)− Eτ∼πR(τ) + wL(π, πB) (3)

where λ = [λ1, λ2, ..., λN ]T is the Lagrangian multiplier corresponding to the primary problem (3).
In practice, we can update (π,λ) iteratively (Stooke et al., 2020).
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(a) Unfeasible (b) Conservative (c) Behavior policy πB

Figure 1: (a) example of unfeasible dataset. (b) example of conservative dataset. (c) behavior policy
obtained from unfeasible dataset and conservative dataset.

4. Distribution aligned sampling for Offline Safe Reinforcement Learning
In this section, we first state the suboptimality of the behavior policy πB , which shows either
unfeasible or conservative property. Then we focus on how the behavior policy πB affects policy
regularized safe offline RL algorithms, from which we identify that the policy regularizer will
contribute most to the conservative or unfeasible of the learned policy. At last we propose our
sampling method, Distribution Aligned Sampling (DIAM) to ease the suboptimality of behavior
policy πB thus be beneficial to the policy-regularized safe offline RL.

4.1. Problem Statement: suboptimality of πB
In this part, we first formulate the problem of the suboptimality of the behavior policy πB , then we
present our distribution aligned sampling method to deal with this problem. In problem formulation,
in order to avoid OOD issue, we choose to solve the regularized form of constrained safe RL problem
(2). This regularization term depends on the behavior policy πB , hence the performance gap between
the regularized optimal policy π∗

r and the optimal policy π∗ is bounded as:

Eτ∼π∗ [R(τ)]− Eτ∼π∗
r
[R(τ)] ≤ wL(π∗, πB). (4)

The proof is given in Appendix. Hence the suboptimality property of recent method depends highly
on the suboptimality of the behavior policy πB . Many collections of dataset D depend on the online
RL algorithms (Liu et al., 2023a), which encourage exploration and learn from mistakes, hence
the dataset collected by the algorithms may show suboptimality of πB . In practice, conditioned on
a specific threshold κ, the behavior policy πB shows either unfeasible or conservative property.
Intuitively, unfeasible policy is more rewarding but violates cost constrains (Liu et al., 2022b), while
conservative policy obeys the safety constrains well but is less rewarding. Figure 1 illustrates typical
examples of unfeasible dataset and conservative dataset. Due to the exploration practice in the online
RL, if sampled evenly, the behavior policy of the collected dataset by online RL may be unfeasible.
On the other hand, the behavior policy of the safe dataset may be conservative due to the insufficient
exploration in the safe trajectories. Hence, given a dataset D and cost threshold κ, the most common
case is that the induced behavior policy πB of the dataset D is sub-optimal and will cause the learned
policy π to be either conservative or unfeasible.
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Figure 2: experiment on the function of suboptimal behavior policy πB . The tasks are chosen as Ball
Circle (left) and Car Circle (right). Vanilla: raw dataset. Policy Regularizer: only policy regularizer
access to expert dataset. No Policy Regularizer: only policy regularizer access to raw suboptimal
dataset.

4.2. How does suboptimality of behavior policy affect policy-regularized safe offline RL
algorithms?

Policy-regularized safe offline RL algorithms mainly obtain three parts: Policy regularizer, Critic
and Actor. Policy regularizer is mainly applied to encourage the learned policy close enough to
behavior policy πB . Critic acts as estimated Q-function in practice, which encourages the update of
learned policy. Actor is a framework that generate action guided by the Policy regularizer and Critic.
To illustrate how the unfeasible dataset and conservative dataset affect the performance of policy
regularized safe offline RL algorithms, we conduct experiment shown in Figure 2, which indicates
that sub-optimal dataset mainly influences the Policy regularizer hence affect the performance
of policy-regularized safe offline RL algorithms. This is because that the regularizer pushes the
learned policy to be close to the behavior policy. The Critic and Actor show little variation under
different dataset with same support. Hence, in order to improve the performance of policy-regularized
safe offline RL algorithms, one potential direction is to optimize the suboptimality of the policy
regularizer caused by the unfeasible or conservative behavior policy πB .

4.3. Distribution aligned sampling: optimize behavior policy

In this subsection, we propose to use distribution aligned sampling to optimize the behavior policy,
which is to provide a sampling weight for each trajectory τ . Without changing the dataset support,
the aligned sampling is equivalent to change the behavior policy.
Unbias estimation of Eτ∼πw . To start up, we first show how the resampling of trajectories emulates
sampling transitions generated by an implicit behavior policy different from the behavior that
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collected the dataset. According to the work in (Hong et al., 2023a), the newly induced weighted
state-action distribution has the form of

dW (s, a) =
N∑
i=1

widπB (s)πB(a|s)

where the weight wi is the weight of τi, W = {w0, w1, ..., wN−1}, and dπB is defined as state
occupancy measure induced by the behavior policy πB hence to train a better policy regularizer
benefit regularized safe algorithms. The behavior policy of the weighted dataset DW can be therefore
formed as πW = dW (s, a)/

∑N
i=1widπB (s). Followed by the (Hong et al., 2023a), with the

assumption that the discount factor of DW is less than 1, the trajectory-wise expected return and cost
of the weighted behavior policy can be bounded by the Hoeffding’s inequality (Serfling, 1974) as:

P

[∣∣∣∣Eτ∼πW [R(τ)]−
N∑
k=1

wiR(τk)

∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
2ϵ2

δ2R
∑N

k=1w
2
k

)
,

where δR = maxR(τk) − minR(τk) is the reward interval amplitude. Similarly, the cost of the
weighted behavior policy can also be center-bound: for any i ∈ {1, 2, 3...N}, ϵ > 0

P

[∣∣∣∣Eτ∼πW [Ci(τ)]−
N∑
i=1

wkCi(τk)

∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
2ϵ2

δ2Ci

∑N
k=1w

2
k

)
,

where δCi = maxCi(τk) − minCi(τk). With the concentration inequality above, we have the
unbiased estimation of Eτ∼πW [R(τ)] and Eτ∼πW [Ci(τ)] as

∑N
k=1wiR(τk),

∑N
i=1wkCi(τk) respec-

tively.
Optimize Weighted Behavior Policy πW . We start with a conservative policy π induced dataset D,
i.e, Eτ∼π[Ci(τ)] ≤ κi,∀i. In practice, this dataset can be achieved by filtering unsafe trajectory to
obtain. We formalize our goal as to maximize the following term:

max
W

Eτ∼πW [R(τ)], s.t. Eτ∼πW [Ci(τ)] ≤ κi, i = 1, 2, 3...N.

By the unbias estimation of Eτ∼πw , the maximization problem maxW Eτ∼πW [R(τ)] can be trans-
formed into

max
W

N∑
k=1

wiR(τk) + βH(W ),

where H(·) is information entropy that acts as a regularization, i.e. H(W ) = −
∑

wi logwi, and
β is a temperature parameter to control the regularization. Now it remains to formulate the safety
constraint. As safety is the top priority in offline safe reinforcement learning, we hope the weighted
sampled dataset can achieve at least as conservative as the conservative policy π, that is, we formalize
the safety constrain as:

κi − Eτ∼πW [Ci(τ)]√
Varτ∼πW [Ci(τ)]

≥ κi − Eτ∼π[Ci(τ)]√
Varτ∼π[Ci(τ)]

,∀i ∈ [N ].

The threshold set above garrantees the optimization problem solvable in practice as the Eτ∼πW [Ci(τ)]
can be estimated through

∑N
i=1wkCi(τk). This sampling weight can be directly computed by

optimization tool box without loss of precision.
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5. Experiment

In the experiment section, we aim to answer the following questions: (1) how does DIAM perform
compared to other offline safe RL baselines? (2) how does DIAM compare to baseline methods? (3)
How robust is DIAM in terms of the hyperparameters? To validate our method, we set the following
experiments for evaluation.
Tasks and Datasets. We adopt robot locomotion control tasks and datasets in the public benchmark
Bullet-Safety-Gym (Gronauer, 2022), Safety-gymnasium (Ji et al., 2023), and public
offline RL dataset DSRL (Liu et al., 2023a) for evaluation. We consider two tasks (Circle and
Run) with three types of agent, Ball, Car and Drone. These experiments are commonly used in
previous works (Liu et al., 2023b; Zhang et al., 2020).
Baselines. We compare our method with two categories of regularized algorithms baselines: model-
centric approaches and data-centric approaches.
• Model-centric approach: (1) Imitation Learning: BC (Behavior cloning), BC-safe (Behavior
cloning with safe dataset) (Xu et al., 2022); (2) Q-Learning based methods: BCQ-Lag (Fujimoto
et al., 2019), BEAR-Lag (Kumar et al., 2019a), and CPQ (Xu et al., 2022); (3) Distribution Correction
Estimation: COptiDICE (Lee et al., 2021). (4) Sequential modeling: CDT (Liu et al., 2023b).
• Data-centric approach: (1) Vanilla-BCQ-Lag, (2) Safe-BCQ-Lag, (3) Safe-10-BCQ-Lag,
and (4) Top-10-BCQ-Lag. Safe-BCQ-Lag represents sampling with solely safe data, i.e.
wk = 0 if there exists i ∈ [N ], Ci(τk) ≤ κi. Top-10-BCQ-Lag represents sampling with data that
obtains the top 10% reward. Safe-10-BCQ-Lag represents sampling with safe data that obtains
the top 10% reward.
Metrics. We adopt the normalized reward return and normalized cost as evaluation metrics, which is
based on previous offline safe RL works (Yao et al., 2024a). The normalized reward and normalized
cost are defined as:

Rnormalized = Rπ/rmax(D), Cnormalized = Cπ/κ,

where Rπ, Cπ are the reward return and cost return respectively, rmax(D) is the maximum theoretical
return of certain task given dataset D. Each evaluation is done over 3 seeds and taken averaged
results and standard deviations in order to avoid avoid randomness.

5.1. How does DIAM perform compared to other offline safe RL baselines

We compare DIAM on two types of baselines, Model-centric approach and Data-centric approach.
Model-centric approach. The comparison results on model-centric are presented in Table.1 with
cost threshold κ = 20. The results of BC and BC-Safe illustrate the suboptimality of the behavior
policy πB , which is either tempting or conservative with whole dataset and safe dataset respectively.
The results of BCQ-Lag and BEAR-Lag further prove the importance of behavior policy πB in
regularized Q-learning based algorithms. The CPQ shows notable reward degradation across all
tested tasks due to the over-conservative behaviors learned from pessimistic estimation methods,
while CDT learns a rather tempting policy in many tasks, violating the top priority of considering the
safety-constrain. Compared to those algorithms, DIAM is able to balance well the demand for safety
and reward, learning a safe and relatively rewarding behavior.
Data-centric approach.We then conduct experiment to compare DIAM with Data-centric approach.
The Data-centric approach is based on the regularized Q-based algorithm BCQ-Lag. we also set up
two additional constrains, High Velocity Constrain and Low Velocity Constrain (Yao et al., 2024b),
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Algorithm Stats BallCircle CarCircle DroneCircle BallRun CarRun DroneRun
BC reward ↑ 0.76 ± 0.03 0.50 ± 0.04 0.84 ± 0.05 0.73 ± 0.04 0.98 ± 0.00 0.42 ± 0.18

cost ↓ 2.24 ± 0.17 2.66 ± 0.88 3.19 ± 0.56 3.02 ± 0.16 0.72 ± 0.78 1.33 ± 1.23
BC-Safe reward ↑ 0.55 ± 0.03 0.35 ± 0.11 0.62 ± 0.01 0.20 ± 0.01 0.98 ± 0.00 0.57 ± 0.02

cost ↓ 1.08 ± 0.27 1.01 ± 0.28 0.42 ± 0.17 0.89 ± 0.17 0.01 ± 0.00 0.27 ± 0.38
BCQ-Lag reward ↑ 0.71 ± 0.04 0.59 ± 0.03 0.57 ± 0.87 0.04 ± 0.09 0.91 ± 0.04 0.67 ± 0.05

cost ↓ 1.96 ± 0.26 1.78 ± 0.14 3.57 ± 0.49 1.97 ± 1.50 0.00 ± 0.00 5.28 ± 0.31
BEAR-Lag reward ↑ 0.80 ± 0.04 0.85 ± 0.05 0.87 ± 0.03 0.56 ± 0.42 0.62 ± 0.29 0.16 ± 0.14

cost ↓ 2.49 ± 0.26 3.08 ± 0.88 3.61 ± 0.26 3.08 ± 2.18 3.62 ± 2.85 4.11 ± 2.42
CPQ reward ↑ 0.62 ± 0.03 0.65 ± 0.03 0.01 ± 0.02 0.37 ± 0.03 0.98 ± 0.01 0.34 ± 0.01

cost ↓ 0.78 ± 0.14 0.45 ± 0.63 0.64 ± 0.36 3.08 ± 0.66 1.69 ± 1.57 1.08 ± 0.79
COptiDICE reward ↑ 0.72 ± 0.01 0.44 ± 0.05 0.42 ± 0.01 0.63 ± 0.03 0.95 ± 0.01 0.67 ± 0.03

cost ↓ 2.30 ± 0.11 3.45 ± 0.56 0.85 ± 0.34 3.12 ± 0.15 0.00 ± 0.00 3.75 ± 0.16
CDT reward ↑ 0.70 ± 0.00 0.72 ± 0.02 0.64 ± 0.00 0.30 ± 0.00 1.00 ± 0.00 0.60 ± 0.00

cost ↓ 1.06 ± 0.04 0.82 ± 0.01 1.07 ± 0.04 0.28 ± 0.40 1.01 ± 0.20 0.33 ± 0.13
DIAM reward ↑ 0.71 ± 0.01 0.66 ± 0.02 0.64 ± 0.01 0.30 ± 0.11 0.96 ± 0.02 0.34 ± 0.04

cost ↓ 0.98 ± 0.12 0.30 ± 0.25 0.45 ± 0.17 0.57 ± 0.46 0.45 ± 0.63 0.69 ± 0.55

Table 1: Evaluation of results through single constraint. The cost threshold is 1. Gray: unsafe agent.
Bold: Safe agent with all cost threshold less than 1. Safe: Safe agent with all cost threshold less than
1.

to make our problem more challenging and practical. The high velocity constrain induces cost when
the agent exceed the upper velocity limit, while the low velocity constrain induces cost when the
agent falls below the lower velocity limit. The costs are all binary. The tasks setting is Circle, with
various robots (Ball, Car, Drone). The results are shown in Table.2. When the cost constrain
is more complex and challenging, behavior policy is more difficult to stay within safe boundaries
because the feasible set for policy is shrinkage. Our results can be found in Table.2. The Vanilla and
Top-10 data show that tempting dataset will induce unsafe policy in regularized Q-learning based
algorithm. The violation of cost constraint in Safe-Top-10 group illustrates that filtering sub-optimal
data intuitively will reduce the dataset support, hence induce insufficient coverage of (s, a)− pairs
in the environment producing greater variance. The Safe dataset, on the contrary, will induce a
relative conservative policy with low reward, and due to the fact that some constrains are positively
related to the reward, the learned policy can be rather tempting in terms of some safety constrains.
DIAM mitigates those drawbacks by sampling with certain weights and achieves high reward without
violating the safety constraint, which shows strength in those cases.

5.2. How does DIAM benefit policy-regularized safe reinforcement learning method?

In this part, we conduct extensive experiment to illustrate the benefit of DIAM. Apart from ablation
study in Figure.2, further experiment is conducted to evaluate the function of DIAM. We focus on
the comparison with Data-centric approach. Figure.2 illustrates that the suboptimality of behavior
policy πB can induce the policy regularizer to learn a either unfeasible or conservative policy. To step
further, as shown in Figure.3, training with whole dataset or top-10% dataset will learn a feasible
policy as expected, while safe dataset will induce a relative conservative policy. Safe-top-10 dataset
cannot learn a ideal policy in some cases, but due to the limited dataset support, it shows high
variance and tempting property, which indicates that optimizing behavior policy πB is non-trivial and
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Tasks Stats Safe-Top-10 Safe Vanilla Top-10 DIAM
BallCircle reward ↑ 0.85 ± 0.02 0.68 ± 0.04 0.75± 0.03 0.89 ± 0.01 0.77 ± 0.02

cost ↓ 1.06 ± 0.03 0.48 ± 0.06 1.08 ± 0.14 1.35 ± 0.04 0.96 ± 0.04
high vel cost ↓ 0.84 ± 0.11 1.18 ± 0.27 1.05 ± 0.12 0.77 ± 0.30 0.88 ± 0.07
low vel cost ↓ 1.17 ± 0.02 0.92 ± 0.05 0.95 ± 0.04 1.06 ± 0.01 0.84 ± 0.04

CarCircle reward↑ 0.73 ± 0.02 0.56 ± 0.04 0.92± 0.03 0.79 ± 0.02 0.67 ± 0.01
cost ↓ 1.82 ± 0.59 0.39 ± 0.09 2.35 ± 0.04 1.29 ± 0.34 0.91 ± 0.16
high vel cost ↓ 1.04 ± 0.63 0.61 ± 0.23 0.25 ± 1.12 0.76 ± 0.48 0.89 ± 0.13
low vel cost ↓ 0.85 ± 0.01 0.87 ± 0.03 0.91 ± 0.02 0.96 ± 0.06 0.86 ± 0.03

DroneCircle reward ↑ 0.57 ± 0.03 0.63 ± 0.01 0.71 ± 0.02 0.72 ± 0.09 0.63 ± 0.01
cost ↓ 1.38 ± 0.40 0.62 ± 0.34 1.38 ± 0.38 3.84 ± 0.22 0.50 ± 0.38
high vel cost ↓ 0.94 ± 0.43 0.45 ± 0.33 0.86 ± 0.50 1.07 ± 1.49 0.46 ± 0.33
low vel cost ↓ 0.53 ± 0.04 0.49 ± 0.01 0.48 ± 0.03 0.54 ± 0.05 0.48 ± 0.04

Table 2: Evaluation of results through multi-constraint. The cost threshold is 1. Gray: unsafe agent.
Bold: Safe agent with all cost threshold less than 1. Safe: Safe agent with all cost threshold less than
1.

requires sophisticated design. In contrast, DIAM shows its strength to obtain a feasible and relatively
rewarding behavior policy that is able to guide policy-regularized safe RL algorithms.
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Figure 3: Comparison between Data-centric approach.

5.3. How does DIAM applied to different policy-regularized offline safe RL algorithms?
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Figure 4: Results of comparison between under
different offline policy-regularized RL algorithms.

In this subsection, we aim to show the compat-
ibility of DIAM with policy-regularized offline
safe RL algorithms. The result of our exper-
iment is shown in Figure.4. The original BC
shows highly tempting property due to the sub-
optimality of the behavior policy, while DIAM
shows ability to form a safe and rewarding be-
havior with raw dataset. The BCQ-Lag and
BEAR-Lag are both compatible with DIAM as
policy-regularized offline safe RL algorithms
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are easily affected by behavior policy. Notably,
due to the pessimistic estimation methods induc-
ing conservative policy, CPQ will be more conservative after DIAM hence show little improvement
of the performance.

6. Conclusion
In this paper, we focus on improving the performance of policy-regularized offline safe algorithms
in comprehensive offline safe-RL tasks. We first identify the suboptimality of behavior policy πB ,
influencing the policy-regularized offline safe algorithms by forming unfeasible or conservative
policy in policy regularizer, which is critical in policy-regularized method. To deal with this issue, we
propose DIAM, a preference aligned sampling method customized for policy-regularized offline safe
algorithms. We conduct extensive experiment to illustrate the superiority of DIAM compared to both
model-centric baselines and data-centric baselines. We also show the ability of DIAM in mitigating
the suboptimality of behavior policy and the compatibility of DIAM with different policy-regularized
offline safe RL algorithms.
Admittedly, our work has at least two limitations. First, our method lacks theoretical guarantees
due to the absence of a unified theoretical analysis framework on the offline RL algorithms with
data-centric method. Second, sampling method cannot change the support of dataset, which means
that our method probably cannot improve the performance of certain offline RL algorithms without
sufficient coverage of state-action pairs.
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Appendix A. Proof of Eq. (4)

Proof Recall the definition of π∗ and π∗
r in equation 1 and equation 2 respectively, we have

Eτ∼π∗ [R(τ)]− Eτ∼π∗
r
[R(τ)]

= (Eτ∼π∗ [R(τ)]− wL(π∗, πB))− (Eτ∼π∗
r
[R(τ)]− wL(π∗

r , πB)) + wL(π∗, πB)− wL(π∗
r , πB)

≤ w(L(π∗, πB)− L(π∗
r , πB))

≤ wL(π∗, πB),

hence we conclude the proof.

Appendix B. Illustration of how β forms the dataset sampling

0 10 20 30 40 50 60 70 80
cost

0

200

400

600

800

re
wa

rd
 re

tu
rn

= 0.20

cost limit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) β = 0.2

0 10 20 30 40 50 60 70 80
cost

0

200

400

600

800

re
wa

rd
 re

tu
rn

= 0.40

cost limit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) β = 0.4

0 10 20 30 40 50 60 70 80
cost

0

200

400

600

800

re
wa

rd
 re

tu
rn

= 0.60

cost limit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) β = 0.6

0 10 20 30 40 50 60 70 80
cost

0

200

400

600

800

re
wa

rd
 re

tu
rn

= 0.80

cost limit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) β = 0.8

0 10 20 30 40 50 60 70 80
cost

0

200

400

600

800

re
wa

rd
 re

tu
rn

= 1.00

cost limit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(e) β = 1.0

Figure 5: Tasks under Ball Circle. When the temperature parameter β → 0, the sampled dataset
is more tempting and concentrated. When the β → ∞, the sampling method is closer to uniform
sampling.
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