Policy regularized Offline safe RL with Preference aligned sampling

Speaker: Cheng Tang

Department of Mechanical Engineering

Carnegie Mellon University

Introduction

Problem Formulation

Method

Experiment

Future Work and Limitations

Cheng Tang

Introduction

Carnegie Mellon University

Application in Safe Reinforcement Learning

Autonomous Driving tasks **Robotic tasks** Control Training step 1 Training step Generate Batch Simulated Batch Training step 2 Training step. Batch Simulated Batch Training step n Training step Generate Batch Simulated Batch Reambia Dutaset samples from Samples Sattole Positive Sample

[1] Zhili Zhang, Songyang Han, Jiangwei Wang, and Fei Miao. Spatial-temporal-aware safe multiagent reinforcement learning of connected autonomous vehicles in challenging scenarios. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5574–5580. IEEE, 2023.

[2] Weiye Zhao, Rui Chen, Yifan Sun, Ruixuan Liu, Tianhao Wei, and Changliu Liu. Guard: A safe reinforcement learning benchmark. arXiv preprint arXiv:2305.13681, 2023.[3] Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepthermal: Combustion optimization for thermal power generating units using offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 4680–4688, 2022.

Cheng Tang

Multi-constrain safe RL

Carnegie Mellon University

Introduction

Carnegie Mellon University

Safety Constrains in Reinforcement learning

■ High velocity constrain

Boundary constrain

■ Low velocity constrain

Introduction

Problem Formulation

Method

Experiment

Future Work and Limitations

Cheng Tang

Multi-constrain Safe Reinforcement Learning

- Constrained Markov Decision Process(CMDP): $M = (S, A, P, r, c, \gamma, \mu_0)$,
- State *s*, action *a*, transition kernel *P*, initial distribution μ_0
- reward $r: S \times A \to \mathbb{R}$, cost $c: S \times A \to \mathbb{R}^N$, cost dimension N
- Value function: $V_r^{\pi}(\mu_0) = \mathbb{E}_{\tau \sim \pi} \sum_t \gamma^t r_t$, $V_{c_i}^{\pi}(\mu_0) = \mathbb{E}_{\tau \sim \pi} \sum_t \gamma^t c_i^t$, $i = 1, 2, 3 \dots N$
- Safe RL problem:

$$\pi^* = \arg \max_{\pi} V_r^{\pi} \quad s.t. \quad V_c^{\pi} \leq \epsilon$$

Threshold $\boldsymbol{\epsilon}$: max-tolerate cost vector for one trajectory

behavior policy of the dataset and optimal policy

$$\mathbb{E}_{\tau \sim \pi^*}[R(\tau)] - \mathbb{E}_{\tau \sim \pi^*_r}[R(\tau)] \le w L(\pi^*, \pi_B).$$

Introduction

Carnegie Mellon University

Safety in Offline Multi-constrain Reinforcement Learning

- Challenges in Offline multitask Reinforcement learning :
 - **Distribution shift:** Limited Dataset
- Challenges in Safety in Robot Reinforcement Learning:
 - **Unfeasible behavior policy:** policy tend to ignore safety
 - constrains when optimizing reward
 - Conservative behavior policy: policy tend to be overly conservative

Introduction

Problem Formulation

Method

Experiment

Future Work and Limitations

Cheng Tang

- How does suboptimality of behavior policy affect policy-regularized safe offline RL algorithms?
 - **Three components of policy-regularized safe algorithm: Policy Regularizer, Critics and Actor**

Cheng Tang

Methods

Dataset resampling (achieving a better behavior policy)

Safe top 10% dataset(too tempting)

Safe dataset(too conservative)

Ours(DIAM)

Multi-constrain safe RL

Carnegie Mellon University

Methods

Carnegie Mellon University

Unbiased estimation of $E_{\tau \sim \pi_B}$

• Suppose the trajectory τ_i is sampled with weight w_i , then the weighted state-action distribution

$$d_W(s,a) = \sum_{i=1}^N w_i d_{\pi_B}(s) \pi_B(a|s)$$

• with the assumption that the discount factor of D_W is less than 1, the trajectory-wise expected

return and cost of the weighted behavior policy can be bounded by the Hoeffding's inequality:

$$\mathbb{P}\left[\left|\mathbb{E}_{\tau \sim \pi_{W}}[R(\tau)] - \sum_{k=1}^{N} w_{i}R(\tau_{k})\right| \ge \epsilon\right] \le 2\exp\left(\frac{2\epsilon^{2}}{\delta_{R}^{2}\sum_{k=1}^{N} w_{k}^{2}}\right),$$

$$\mathbb{P}\left[\left|\mathbb{E}_{\tau \sim \pi_{W}}[C_{i}(\tau)] - \sum_{i=1}^{N} w_{k}C_{i}(\tau_{k})\right| \ge \epsilon\right] \le 2\exp\left(\frac{2\epsilon^{2}}{\delta_{C_{i}}^{2}\sum_{k=1}^{N} w_{k}^{2}}\right),$$

$$Unbiased$$

Cheng Tang

Optimize Weighted Behavior Policy π_B

- **Optimization objective** $\max_{W} \mathbb{E}_{\tau \sim \pi_W}[R(\tau)], \text{ s.t. } \mathbb{E}_{\tau \sim \pi_W}[C_i(\tau)] \leq \kappa_i, i = 1, 2, 3...N.$
- **By the Unbiased estimation of** $E_{\tau \sim \pi_B}$, we formalize the minimization problem as: $\max_{W} \sum_{k=1}^{N} w_i R(\tau_k) + \beta H(W),$

 $H(\cdot)$ is information entropy that acts as a regularization, i.e, $H(W) = -\sum w_i \log w_i$.

• We hope the weighted sampled dataset can achieve at least as conservative as the behavior

policy

$$\frac{\kappa_i - \mathbb{E}_{\tau \sim \pi_W}[C_i(\tau)]}{\sqrt{\operatorname{Var}_{\tau \sim \pi_W}[C_i(\tau)]}} \ge \frac{\kappa_i - \mathbb{E}_{\tau \sim \pi}[C_i(\tau)]}{\sqrt{\operatorname{Var}_{\tau \sim \pi}[C_i(\tau)]}}, \forall i \in [N].$$

Cheng Tang

Multi-constrain safe RL

Carnegie Mellon University

Introduction

Problem Formulation

Method

Experiment

Future Work and Limitations

• We want to explore:

- How does DIAM perform compared to other offline safe RL baselines ?
- How does DIAM benefit policy-regularized safe reinforcement learning method in different cost thresholds?
- How does DIAM applied to different policy-regularized offline safe RL algorithms?
- Baselines
- Model-centric approach: (1) Imitation Learning: BC (Behavior cloning), BC-safe (Behavior cloning with safe dataset) (2) Q-Learning based methods: BCQ-Lag, BEAR-Lag, and CPQ; (3) Distribution Correction Estimation: COptiDICE (4) Sequential modeling: CDT.
- Data-centric approach: (1) Vanilla-BCQ-Lag, (2) Safe-BCQ-Lag, (3) Safe-10-BCQ-Lag, and (4) Top-10-BCQ-Lag.

Experiment

Carnegie Mellon University

Experiment task settings

- Safe RL platform **Bullet-Safety-Gym** [1] with single and multi-constrains
- Diverse robotic dynamics.

Ball agent

Car agent

Drone agent

Cheng Tang

Multi-constrain safe RL

Carnegie Mellon University (15)

■ Q1: how is our method compared to other baselines? (Model-centric approach)

Algorithm	Stats	BallCircle	CarCircle	DroneCircle	BallRun	CarRun	DroneRun
BC	reward ↑	0.76 ± 0.03	0.50 ± 0.04	0.84 ± 0.05	0.73 ± 0.04	$\textbf{0.98} \pm \textbf{0.00}$	0.42 ± 0.18
	cost ↓	2.24 ± 0.17	2.66 ± 0.88	3.19 ± 0.56	3.02 ± 0.16	$\textbf{0.72} \pm \textbf{0.78}$	1.33 ± 1.23
BC-Safe	reward ↑	0.55 ± 0.03	0.35 ± 0.11	$\textbf{0.62} \pm \textbf{0.01}$	$\textbf{0.20} \pm \textbf{0.01}$	$\textbf{0.98} \pm \textbf{0.00}$	$\textbf{0.57} \pm \textbf{0.02}$
	cost ↓	1.08 ± 0.27	1.01 ± 0.28	$\textbf{0.42} \pm \textbf{0.17}$	$\textbf{0.89} \pm \textbf{0.17}$	$\textbf{0.01} \pm \textbf{0.00}$	$\textbf{0.27} \pm \textbf{0.38}$
BCQ-Lag	reward ↑	0.71 ± 0.04	0.59 ± 0.03	0.57 ± 0.87	0.04 ± 0.09	$\textbf{0.91} \pm \textbf{0.04}$	0.67 ± 0.05
	cost ↓	1.96 ± 0.26	1.78 ± 0.14	3.57 ± 0.49	1.97 ± 1.50	$\textbf{0.00} \pm \textbf{0.00}$	5.28 ± 0.31
BEAR-Lag	reward ↑	0.80 ± 0.04	0.85 ± 0.05	0.87 ± 0.03	0.56 ± 0.42	0.62 ± 0.29	0.16 ± 0.14
	cost↓	2.49 ± 0.26	3.08 ± 0.88	3.61 ± 0.26	3.08 ± 2.18	3.62 ± 2.85	4.11 ± 2.42
CPQ	reward ↑	$\textbf{0.62} \pm \textbf{0.03}$	$\textbf{0.65} \pm \textbf{0.03}$	$\textbf{0.01} \pm \textbf{0.02}$	0.37 ± 0.03	0.98 ± 0.01	0.34 ± 0.01
	cost ↓	$\textbf{0.78} \pm \textbf{0.14}$	$\textbf{0.45} \pm \textbf{0.63}$	$\textbf{0.64} \pm \textbf{0.36}$	3.08 ± 0.66	1.69 ± 1.57	1.08 ± 0.79
COptiDICE	reward ↑	0.72 ± 0.01	0.44 ± 0.05	$\textbf{0.42} \pm \textbf{0.01}$	0.63 ± 0.03	0.95 ± 0.01	0.67 ± 0.03
	cost ↓	2.30 ± 0.11	3.45 ± 0.56	$\textbf{0.85} \pm \textbf{0.34}$	3.12 ± 0.15	$\textbf{0.00} \pm \textbf{0.00}$	3.75 ± 0.16
CDT	reward ↑	0.70 ± 0.00	$\textbf{0.72} \pm \textbf{0.02}$	0.64 ± 0.00	$\textbf{0.30} \pm \textbf{0.00}$	1.00 ± 0.00	$\textbf{0.60} \pm \textbf{0.00}$
	cost ↓	1.06 ± 0.04	$\textbf{0.82} \pm \textbf{0.01}$	1.07 ± 0.04	$\textbf{0.28} \pm \textbf{0.40}$	1.01 ± 0.20	$\textbf{0.33} \pm \textbf{0.13}$
DIAM	reward 1	$\textbf{0.71} \pm \textbf{0.01}$	$\textbf{0.66} \pm \textbf{0.02}$	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.30} \pm \textbf{0.11}$	$\textbf{0.96} \pm \textbf{0.02}$	$\textbf{0.34} \pm \textbf{0.04}$
	cost ↓	$\textbf{0.98} \pm \textbf{0.12}$	$\textbf{0.30} \pm \textbf{0.25}$	$\textbf{0.45} \pm \textbf{0.17}$	$\textbf{0.57} \pm \textbf{0.46}$	0.45 ± 0.63	$\textbf{0.69} \pm \textbf{0.55}$

Gray: unsafe agent

Bold: safe agent

Blue: safe agent with highest reward

• **DIAM** is able to balance well the demand for safety and reward, learning a safe and relatively rewarding behavior

Cheng Tang

Experiment

Q1: how is our method compared to other baselines? (Data-centric approach)

Tasks	Stats	Safe-Top-10	Safe	Vanilla	Top-10	DIAM
BallCircle	reward ↑	0.85 ± 0.02	0.68 ± 0.04	0.75 ± 0.03	0.89 ± 0.01	$\textbf{0.77} \pm \textbf{0.02}$
	cost ↓	1.06 ± 0.03	0.48 ± 0.06	1.08 ± 0.14	1.35 ± 0.04	$\textbf{0.96} \pm \textbf{0.04}$
	high vel cost↓	0.84 ± 0.11	1.18 ± 0.27	1.05 ± 0.12	0.77 ± 0.30	$\textbf{0.88} \pm \textbf{0.07}$
	low vel cost \downarrow	1.17 ± 0.02	0.92 ± 0.05	0.95 ± 0.04	$\underline{1.06}\pm0.01$	$\textbf{0.84} \pm \textbf{0.04}$
CarCircle	reward↑	0.73 ± 0.02	$\textbf{0.56} \pm \textbf{0.04}$	$0.92{\pm}\ 0.03$	0.79 ± 0.02	$\textbf{0.67} \pm \textbf{0.01}$
	cost ↓	1.82 ± 0.59	$\textbf{0.39} \pm \textbf{0.09}$	2.35 ± 0.04	1.29 ± 0.34	$\textbf{0.91} \pm \textbf{0.16}$
	high vel cost ↓	1.04 ± 0.63	$\textbf{0.61} \pm \textbf{0.23}$	0.25 ± 1.12	0.76 ± 0.48	$\textbf{0.89} \pm \textbf{0.13}$
	low vel cost ↓	0.85 ± 0.01	$\textbf{0.87} \pm \textbf{0.03}$	0.91 ± 0.02	0.96 ± 0.06	$\textbf{0.86} \pm \textbf{0.03}$
DroneCircle	reward ↑	0.57 ± 0.03	$\textbf{0.63} \pm \textbf{0.01}$	0.71 ± 0.02	0.72 ± 0.09	$\textbf{0.63} \pm \textbf{0.01}$
	cost ↓	1.38 ± 0.40	$\textbf{0.62} \pm \textbf{0.34}$	1.38 ± 0.38	3.84 ± 0.22	$\textbf{0.50} \pm \textbf{0.38}$
	high vel cost ↓	0.94 ± 0.43	$\textbf{0.45} \pm \textbf{0.33}$	0.86 ± 0.50	1.07 ± 1.49	$\textbf{0.46} \pm \textbf{0.33}$
	low vel cost \downarrow	0.53 ± 0.04	$\textbf{0.49} \pm \textbf{0.01}$	0.48 ± 0.03	0.54 ± 0.05	$\textbf{0.48} \pm \textbf{0.04}$
ay: unsafe agent		Bold : safe a	gent	Blue: safe agent with highest rev		

Gray: unsafe agent

Blue: safe agent with highest reward

- We also set up two additional constrains, High Velocity Constrain and Low Velocity Constrain
- DIAM samples with certain weights and achieves high reward without violating the safety constraint, which shows strength in even difficult task settings.

Cheng Tang

Q2: How does DIAM benefit policy-regularized safe reinforcement learning method in different cost thresholds?

• In order to answer this question, we conduct research on **Ball Circle(left)** and **Car Circle(right)**, **Drone Circle(not shown)**, where we choose three most commonly used cost threshold **20**, **40**, **60**.

Ball Circle

Car Circle

Experiment

■ Q3: How does DIAM applied to different policy-regularized offline safe RL algorithms?

- **BC** shows highly tempting property due to the suboptimality, of the behavior policy, while **DIAM** shows ability to form a safe and rewarding behavior
- The BCQ-Lag and BEAR-Lag are both compatible with DIAM
- Due to the pessimistic estimation methods inducing conservative policy, **CPQ** will be more conservative after **DIAM** hence show little improvement of the performance.

Cheng Tang

Multi-constrain safe RL

Carnegie

University

Mellonĭ

Introduction

Problem Formulation

Method

Experiment

Future Work

Q: Can sampling method applied to other safe offline RL method like CDT?

• No! Because our sampling method is **trajectory-wise**

■ Q: Can we provide our sampling method with theoretical guarantee?

- Hard to say. Existing works have not provided any framework yet.
- Q: Can sampling method deal with the problems w.r.t multi-constraint?
 - Just empirically work, we don't solve the problem intrinsically
 - The above limitations encourage me to focus on deal with multi-constraint in a more intrinsic way, that is, to train a model to achieve the **Pareto Frontier** in the multi-constraint problem

Cheng Tang

Propose method: CDT + gradient surgery

Constraint Decision Transformer (CDT) and gradient surgery (PC-Grad)

Carnegie

University

Mellon