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B Safety Constrains in Reinforcement learning

B High velocity constrain B Boundary constrain

B Low velocity constrain
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B Multi-constrain Safe Reinforcement Learning

B Constrained Markov Decision Process(CMDP): M = (S,A,P,r,c,y, Up),
B State s, action a, transition kernel P, initial distribution u,

B reward r:S X A - R, cost ¢:S x A » RY, cost dimension N
® Value function: V(o) = Erere X vire, VT (o) = Een Xevicl, i=1,2,3..N
B Safe RL problem:

= argmngr” s.t. V§ <e€

Threshold € : max-tolerate cost vector for one trajectory

M Dbehavior policy of the dataset and optimal policy

Err [R(T)] — Eronz [R(7)] < wL(r*, 7).
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B Safety in Offline Multi-constrain Reinforcement Learning

B Challenges in Offline multitask Reinforcement learning : 244 ‘% |tk
mwa v;\ﬂ» - !‘;‘,'é
. . . . .. 2 ! k _ <9 = B o
B Distribution shift: Limited Dataset al 08 e
0 : \: .":.x -.' = cont ok = i t:.‘ .:; cost limit
| : '.".’ *  En(C.R) 452" " * Eq(C.R)
B Challenges in Safety in Robot Reinforcement Learning: D st © T T costrewm © T
(a) Unfeasible (b) Conservative
B Unfeasible behavior policy: policy tend to ignore safety A_
constrains when optimizing reward e -
B Conservative behavior policy: policy tend to be overly s ’ o
Safe
. 300 ===- cost limit
conservative e o s v
cost returmn
(c) Behavior policy 75
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B How does suboptimality of behavior policy affect policy-regularized safe offline RL
algorithms?

B Three components of policy-regularized safe algorithm: Policy Regularizer, Critics and Actor

s \Vanilla ~w— Policy Regularizer ~-a= (Critic —a— Actor

Cost Reward Cost

B the Policy Regularizer pushes ..

the learned policy to be close __7/2 %ﬂﬁg’f

b.(‘;o-—?‘-"'—:; L5 004 *
to the behavior policy P e 0

B Critics and Actor show little

variation under different /

dataset with same support. /
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B Dataset resampling (achieving a better behavior policy)

Safe top 10% dataset(too tempting)
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Safe dataset(too conservative)
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B Unbiased estimation of E;_,

B Suppose the trajectory t; is sampled with weight w;, then the weighted state-action distribution

N
dy (s, a) = Z wid,,(s)mp(als)

i=1

B with the assumption that the discount factor of Dy, is less than 1, the trajectory-wise expected

return and cost of the weighted behavior policy can be bounded by the Hoeffding’s inequality:

Unbiased
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B Optimize Weighted Behavior Policy g

B Optimization objective max E-r, [R(7)], st Eramy|Ci(7)] < Ki,1=1,2,3..N.

B By the Unbiased estimation of E,_ ., we formalize the minimization problem as:

AN
max ; w;R(mx) + BH(W),

H(-) is information entropy that acts as a regularization, i.e, HW) = —Yw;logw;.
B \We hope the weighted sampled dataset can achieve at least as conservative as the behavior
policy

Ri — ETN?TH [ I(T)] Ki — Eran [C(T)]
\/Vﬁrv'fwru i T)] \/VdrTN'T[ T)]

,Vi € [N].
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B \We want to explore:
® How does DIAM perform compared to other offline safe RL baselines ?

® How does DIAM benefit policy-regularized safe reinforcement learning method in different cost

thresholds?
® How does DIAM applied to different policy-regularized offline safe RL algorithms?

B Baselines
® Model-centric approach: (1) Imitation Learning: BC (Behavior cloning), BC-safe (Behavior cloning with

safe dataset) (2) Q-Learning based methods: BCQ-Lag, BEAR-Lag, and CPQ; (3) Distribution Correction
Estimation: COptiDICE (4) Sequential modeling: CDT.

® Data-centric approach: (1) Vanilla-BCQ-Lag, (2) Safe-BCQ-Lag, (3) Safe-10-BCQ-Lag, and (4) Top-
10-BCQ-Lag.
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B Experiment task settings

® Safe RL platform Bullet-Safety-Gym [1] with single and multi-constrains

® Diverse robotic dynamics.

—r—
-_—y—
r—
Ball agent Car agent Drone agent
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Algorithm Stats BallCircle CarCircle  DroneCircle BallRun CarRun DroneRun
BC reward T 0.76 £0.03 050+0.04 084+005 073004 098+0.00 042-+0.18
cost | 2244017 266+088 3.19+056 3.02+0.16 0.72+0.78 1.33+1.23
BC-Safe rewardT 055+003 035+0.11 0.62+0.01 020+0.01 098+0.00 0.57+0.02
cost | .08 £0.27 1.01 £028 042+0.17 0.89+0.17 0.01£0.00 0.27 +0.38
BCQ-Lag rewardT 0.71 £0.04 059003 057087 004009 091+0.04 0.67=+0.05
cost | 1.96 026 1.78+0.14 357+049 197150 0.00+0.00 5.28+0.31
BEAR-Lag rewardt 0.80+0.04 085+0.05 087+003 056+042 0.62+029 0.16+0.14
cost | 249+026 3.08+088 3.61+026 3.08+2.18 3.62+285 4.11+242
CPQ reward T 0.62+0.03 065+003 0.01+0.02 037+003 098+0.01 0.34+0.01
cost | 078 +0.14 045+063 0.64+036 308+066 1.69+157 1.08=+0.79
COptiDICE rewardt 072 +0.01 044+0.05 042+0.01 063+003 095+0.01 0.67+0.03
cost | 230+0.11 345+056 085+034 3.12+0.15 0.00+000 3.75+0.16
CDT reward? 0.70 +0.00 0.724+0.02 0.64+0.00 030=+0.00 1.00-+0.00 0.60+ 0.00
cost | 1.06 £0.04 082+001 1.07+0.04 028+040 1.01+020 0.33+0.13
DIAM reward T  0.71 +£0.01 0.66 £0.02 0.64 +0.01 030+0.11 0.96 +0.02 0.34 + 0.04
cost | 098 £0.12 0.30+0.25 045+0.17 057 046 045+0.63 0.69 £ 0.55

Carnegie
Mellon
University

B Q1: how is our method compared to other baselines? (Model-centric approach)

unsafe agent Bold: safe agent Blue: safe agent with highest reward

® DIAM is able to balance well the demand for safety and reward, learning a safe and relatively

rewarding behavior
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B Q1: how is our method compared to other baselines? (Data-centric approach)

Tasks Stats Safe-Top-10 Safe Vanilla Top-10 DIAM
BallCircle reward T 085+0.02 0.68+0.04 075003 0.89+0.01 0.77 %+ 0.02
cost | 1.06 -0.03 048 +0.06 1.08+0.14 1.354+0.04 0.96 =+ 0.04
highvelcost| 0.84 +0.11 .18 £0.27 1.05+=0.12 0.77 =£0.30 0.88 + 0.07
low vel cost | 1.17£0.02 0924+0.05 095+004 1.064+0.01 0.84+ 0.04
CarCircle reward? 0.73 £0.02 056 +0.04 092+0.03 0.79+0.02 0.67 %+ 0.01
cost | .82 +0.59 039+0.09 2354+0.04 1294034 0.91+0.16
highvelcost| 1.04 £0.63 0.61+0.23 025+1.12 0.76 048 0.89 £ 0.13
lowvelcost] 0.85+0.01 087003 091+002 096+0.06 0.86=x0.03
DroneCircle reward 1 0.57 003 0.63+001 0.71+0.02 0.72=+0.09 0.63+0.01
cost | .38 +0.40 0.62+034 138+038 3.84+022 0.50+0.38
highvelcost] 094 +043 045+033 086+0.50 1.07+149 0.46+0.33
lowvelcost] 0.53+0.04 049+001 048+0.03 0.54+0.05 0.48+0.04

unsafe agent Bold: safe agent Blue: safe agent with highest reward

® \\e also set up two additional constrains, High Velocity Constrain and Low Velocity Constrain
® DIAM samples with certain weights and achieves high reward without violating the safety constraint,

which shows strength in even difficult task settings.
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B Q2: How does DIAM benefit policy-regularized safe reinforcement learning method
In different cost thresholds?

® In order to answer this question, we conduct research on Ball Circle(left) and Car Circle(right),

Drone Circle(not shown), where we choose three most commonly used cost threshold 20, 40, 60.
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B Q3: How does DIAM applied to different policy-regularized offline safe RL algorithms?
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® BC shows highly tempting property due to the suboptimality, of the behavior policy, while DIAM shows

ability to form a safe and rewarding behavior

® The BCQ-Lag and BEAR-Lag are both compatible with DIAM

® Due to the pessimistic estimation methods inducing conservative policy, CPQ will be more conservative

after DIAM hence show little improvement of the performance.
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B Q: Can sampling method applied to other safe offline RL method like CDT?

® No! Because our sampling method is trajectory-wise
B Q: Can we provide our sampling method with theoretical guarantee?

® Hard to say. Existing works have not provided any framework yet.

B Q: Can sampling method deal with the problems w.r.t multi-constraint?

® Just empirically work, we don’t solve the problem intrinsically

B The above limitations encourage me to focus on deal with multi-constraint in a more
Intrinsic way, that is, to train a model to achieve the Pareto Frontier in the multi-

constraint problem
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B Constraint Decision Transformer (CDT) and gradient surgery (PC-Grad)

( 2\

HV (with grad) = 0.4462 > HV (without grad) =

| | I l | | | % .
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® Gradient surgery works but not obvious!

causal transformer
encoder (IL00) O GRS (NS () D (D D
- ®006.0.® 0 O O

Figure 2. Constrained decision transformer architecture.
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