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 Sim-to-real gap:

 Autonomous Driving  Robotic Learning  Disease Control

[1] Lindström C, Hess G, Lilja A, et al. Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap[C]//Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2024: 4461-4471.

[2] Bousmalis K, Levine S. Closing the simulation-to-reality gap for deep robotic learning[J]. Google Research Blog, 2017, 1.

[3] Liu Z, Clifton J, Laber E B, et al. Deep spatial q-learning for infectious disease control[J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28(4): 749-773.
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 Distributionally Robust RL：learn more robust policy through Reinforcement Learning   

 d-rectangular DRMDP:  model the uncertainty in the dynamics and aim to achieve the 

best performance under the most adversarial dynamics.

Uncertainty set Value function

Robust value function

 The robust value function can be seen as the worst value function in an uncertainty set 

determined by probability divergence 𝑫

+

=
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Motivation
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 Drawbacks of d-rectangular DRMDP: 

 Needs strong assumption on dual variables

 Existing algorithms rely on approximation to substitute the duality optimization, making it time 

consuming

 Existing work consider mainly TV divergence geometry, leaving blanks for cases with KL and 𝝌𝟐

 RRMDP: applying regularization penalty term measuring the uncertainty

 Related work shows that the robust policy under RRMDP can be equivalent to DRMDP

 The forfeit of uncertainty set constraint makes the dual problem easier, leading to potential 

improvement on computation efficiency and theoretical analysis
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Problem Formulation

 Offline MDP (Markov Decision Process): MDP(S, A, H, P0, r)

 State 𝑠, action 𝑎, reward 𝑟 𝑠, 𝑎 ∈ 0,1 (known), nominal kernel 𝑃0 = 𝑃ℎ
0
ℎ=1

𝐻
, 

 Value function and Q-function: 

 Offline dataset and Learning goal: given 𝑲 trajectory 𝑠ℎ
𝜏 , 𝑎ℎ

𝜏 , 𝑟ℎ
𝜏

ℎ=1
𝐻 and find policy ො𝜋 to minimize the 

Suboptimality gap:

𝑎 ∼ ො𝜋(𝑠)

𝜏 𝑘=1
𝐾

𝑠, 𝑎, 𝑟(𝑠, 𝑎)



R2PVICheng Tang Tsinghua University

Problem Formulation

 RRMDP (Robust Regularized Markov Decision Process): RRMDP(S, A, H, P0, r, 𝜆, 𝐷, F)

 Regularized robust parameter 𝜆, probability divergence 𝐷, feasible set of all perturbed transition kernels F

 Regularized robust value function and Q-function: 

Penalty on divergence with 

nominal kernel

 Offline dataset and Learning goal: given 𝑲 trajectory 𝑠ℎ
𝜏 , 𝑎ℎ

𝜏 , 𝑟ℎ
𝜏

ℎ=1
𝐻 and find policy ො𝜋 to minimize the 

robust Suboptimality gap:

Optimal robust regularized value function
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RRMDP under linear function class

 Linear MDP (Markov Decision Process):

 Known feature mapping 𝜙: 𝑠 × 𝑎 → 𝑅𝑑 , σ𝑖𝜙𝑖 𝑠, 𝑎 = 1, 𝜙𝑖 𝑠, 𝑎 ≥ 0

 Linear reward function and nominal transition kernel class F

 Offline d-rectangular linear RRMDP (d-RRMDP) 

 Regularized robust value function and Q-function (under linear setting): 

 Optimal robust regularized value function and Q-function: 
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Dynamic programming principles

 Robust regularized Bellman Equation:

 This preposition shows the recurrence relationship of regularized robust value function

 Existence of optimal policy 

 The existence of optimal policy guarantees the solvable of d-RRMDP with greedy policy 

 The closeness of linear function class ensures the establishment of the above propositions
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Method - Framework

 Pessimism based algorithm

 Linearity of Q-function

 Step 1: estimate 𝒘𝒉
𝝀 by solving dual problem

 Step 2: construct pessimism penalty 𝚪𝒉(⋅,⋅)

 Step 3: compute pessimistic Q-function



R2PVICheng Tang Tsinghua University

Method – R2PVI-TV

 Dual form of TV

 Specific applicable algorithm

Close form solution

 Obtain by least square regression: 

 Specifically designed penalty with 𝜷𝑻𝑽
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Method – R2PVI-KL

 Dual form of KL

Logarithm may generate error  

 Specific applicable algorithm

 Obtain by least square regression: 

 Clip the ෝ𝒘𝒉
′ with lower bound on  

 Specifically designed penalty with 𝜷𝑲𝑳
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Method – R2PVI-𝝌𝟐

 Dual form of 𝝌𝟐

 Specific applicable algorithm Require to solve max problem

 estimate 𝒘𝒉
𝝀 by solving dual problem

 Specifically designed penalty with 𝜷𝝌𝟐
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Instance-Dependent Upper Bound 

Φ 𝚲ℎ
−1 , 𝑠 : uncertainty function

 We provide Instance-dependent upper bound for our algorithms:

 The upper bound relies on a novel uncertainty function 
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Information-Theoretic Lower Bound

 We further establish information-theoretic lower bound to illustrate the necessity of Φ 𝚲ℎ
−1 , 𝑠

 The construction of hard instance

perturbation
 The nominal environment is constructed by inserting an 

error into the environment with two absorbing states

 The perturbed environment resembles the nominal 

kernel besides a controllable perturbation
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Instance-Independent Upper Bound 

 Comparison of the Suboptimality gap with dataset coverage 

 For TV divergence, our algorithm achieves nearly same suboptimality gap with SOTA

 For KL divergence, our algorithm needs no extra assumption to guarantee the closeness form solution

 For 𝝌𝟐 divergence, we are the first to give algorithms under linear MDP setting with 𝝌𝟐 divergence

* The ⋆ denotes that the result requires an additional assumption on the KL dual variable, which is not required in R2PVI
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We want to explore: 

Experiment

 The robustness of R2PVI when facing adversarial dynamics

 The role of regularizer 𝝀 in determining the robustness of R2PVI

 The computation cost of R2PVI compared to other robust algorithms

 Baselines

Method PEVI DRPVI DRVI-L R2PVI (ours)

Framework MDP d-DRMDP d-DRMDP d-RRMDP

Divergence / TV KL TV/KL/𝜒2

* We don’t compare DROP and P2MPO mentioned in the upper bound due to the lack of experiment and code base in

such works.
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 Task settings

Experiment

Perturb transition on 

time step 1

 Simulated Linear MDP

Price fluctuates
(through Bernoulli Distribution)

American Put Option

Agent

Buy Not Buy

Dataset
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Simulated Linear MDP 

 Evaluation

 Compared to non robust algorithm (PEVI), R2PVI learns robust policy under all divergence measure

 Robust parameter 𝝀 serves as regularization to adjust the robustness of the policy

 𝝀 plays a similar role in d-RRMDP as inverse robust parameter 1/𝝆 in d-DRMDP
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American Put Option

 Evaluation

 When 𝑵 and 𝒅 are large, the computation cost of  DRPVI and DRVI-L increase rapidly

 The computation cost of R2PVI is as low as PEVI.

 R2PVI can achieve the same robust performance with DRPVI and DRVI-L
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Conclusion

 Contribution

 We propose a novel d-RRMDP framework and establish dynamic planning principles 

 We derive dual formulations of Q-functions under TV, KL, 𝝌𝟐 divergence, and admit their 

linear representations

 We design meta-algorithms, R2PVI, in our setting and provide specific applicable algorithms 

under TV, KL, 𝝌𝟐 divergence 

 We provide instance-dependent upper bounds of our algorithms with a general form

and then construct theoretical-lower bound to illustrate that the general form is intrinsic

 We conduct extensive experiment to illustrate robustness and time efficiency of our algorithms
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Thank you!
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