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 Sim-to-real gap:

 Autonomous Driving  Robotic Learning  Disease Control

[1] Lindström C, Hess G, Lilja A, et al. Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap[C]//Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2024: 4461-4471.

[2] Bousmalis K, Levine S. Closing the simulation-to-reality gap for deep robotic learning[J]. Google Research Blog, 2017, 1.

[3] Liu Z, Clifton J, Laber E B, et al. Deep spatial q-learning for infectious disease control[J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28(4): 749-773.
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 Distributionally Robust RL：learn more robust policy through Reinforcement Learning   

 d-rectangular DRMDP:  model the uncertainty in the dynamics and aim to achieve the 

best performance under the most adversarial dynamics.

Uncertainty set Value function

Robust value function

 The robust value function can be seen as the worst value function in an uncertainty set 

determined by probability divergence 𝑫

+

=
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 Drawbacks of d-rectangular DRMDP: 

 Needs strong assumption on dual variables

 Existing algorithms rely on approximation to substitute the duality optimization, making it time 

consuming

 Existing work consider mainly TV divergence geometry, leaving blanks for cases with KL and 𝝌𝟐

 RRMDP: applying regularization penalty term measuring the uncertainty

 Related work shows that the robust policy under RRMDP can be equivalent to DRMDP

 The forfeit of uncertainty set constraint makes the dual problem easier, leading to potential 

improvement on computation efficiency and theoretical analysis
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Problem Formulation

 Offline MDP (Markov Decision Process): MDP(S, A, H, P0, r)

 State 𝑠, action 𝑎, reward 𝑟 𝑠, 𝑎 ∈ 0,1 (known), nominal kernel 𝑃0 = 𝑃ℎ
0
ℎ=1

𝐻
, 

 Value function and Q-function: 

 Offline dataset and Learning goal: given 𝑲 trajectory 𝑠ℎ
𝜏 , 𝑎ℎ

𝜏 , 𝑟ℎ
𝜏

ℎ=1
𝐻 and find policy ො𝜋 to minimize the 

Suboptimality gap:

𝑎 ∼ ො𝜋(𝑠)

𝜏 𝑘=1
𝐾

𝑠, 𝑎, 𝑟(𝑠, 𝑎)
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Problem Formulation

 RRMDP (Robust Regularized Markov Decision Process): RRMDP(S, A, H, P0, r, 𝜆, 𝐷, F)

 Regularized robust parameter 𝜆, probability divergence 𝐷, feasible set of all perturbed transition kernels F

 Regularized robust value function and Q-function: 

Penalty on divergence with 

nominal kernel

 Offline dataset and Learning goal: given 𝑲 trajectory 𝑠ℎ
𝜏 , 𝑎ℎ

𝜏 , 𝑟ℎ
𝜏

ℎ=1
𝐻 and find policy ො𝜋 to minimize the 

robust Suboptimality gap:

Optimal robust regularized value function
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RRMDP under linear function class

 Linear MDP (Markov Decision Process):

 Known feature mapping 𝜙: 𝑠 × 𝑎 → 𝑅𝑑 , σ𝑖𝜙𝑖 𝑠, 𝑎 = 1, 𝜙𝑖 𝑠, 𝑎 ≥ 0

 Linear reward function and nominal transition kernel class F

 Offline d-rectangular linear RRMDP (d-RRMDP) 

 Regularized robust value function and Q-function (under linear setting): 

 Optimal robust regularized value function and Q-function: 
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Dynamic programming principles

 Robust regularized Bellman Equation:

 This preposition shows the recurrence relationship of regularized robust value function

 Existence of optimal policy 

 The existence of optimal policy guarantees the solvable of d-RRMDP with greedy policy 

 The closeness of linear function class ensures the establishment of the above propositions
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Method - Framework

 Pessimism based algorithm

 Linearity of Q-function

 Step 1: estimate 𝒘𝒉
𝝀 by solving dual problem

 Step 2: construct pessimism penalty 𝚪𝒉(⋅,⋅)

 Step 3: compute pessimistic Q-function
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Method – R2PVI-TV

 Dual form of TV

 Specific applicable algorithm

Close form solution

 Obtain by least square regression: 

 Specifically designed penalty with 𝜷𝑻𝑽
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Method – R2PVI-KL

 Dual form of KL

Logarithm may generate error  

 Specific applicable algorithm

 Obtain by least square regression: 

 Clip the ෝ𝒘𝒉
′ with lower bound on  

 Specifically designed penalty with 𝜷𝑲𝑳
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Method – R2PVI-𝝌𝟐

 Dual form of 𝝌𝟐

 Specific applicable algorithm Require to solve max problem

 estimate 𝒘𝒉
𝝀 by solving dual problem

 Specifically designed penalty with 𝜷𝝌𝟐
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Instance-Dependent Upper Bound 

Φ 𝚲ℎ
−1 , 𝑠 : uncertainty function

 We provide Instance-dependent upper bound for our algorithms:

 The upper bound relies on a novel uncertainty function 
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Information-Theoretic Lower Bound

 We further establish information-theoretic lower bound to illustrate the necessity of Φ 𝚲ℎ
−1 , 𝑠

 The construction of hard instance

perturbation
 The nominal environment is constructed by inserting an 

error into the environment with two absorbing states

 The perturbed environment resembles the nominal 

kernel besides a controllable perturbation
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Instance-Independent Upper Bound 

 Comparison of the Suboptimality gap with dataset coverage 

 For TV divergence, our algorithm achieves nearly same suboptimality gap with SOTA

 For KL divergence, our algorithm needs no extra assumption to guarantee the closeness form solution

 For 𝝌𝟐 divergence, we are the first to give algorithms under linear MDP setting with 𝝌𝟐 divergence

* The ⋆ denotes that the result requires an additional assumption on the KL dual variable, which is not required in R2PVI
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We want to explore: 

Experiment

 The robustness of R2PVI when facing adversarial dynamics

 The role of regularizer 𝝀 in determining the robustness of R2PVI

 The computation cost of R2PVI compared to other robust algorithms

 Baselines

Method PEVI DRPVI DRVI-L R2PVI (ours)

Framework MDP d-DRMDP d-DRMDP d-RRMDP

Divergence / TV KL TV/KL/𝜒2

* We don’t compare DROP and P2MPO mentioned in the upper bound due to the lack of experiment and code base in

such works.
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 Task settings

Experiment

Perturb transition on 

time step 1

 Simulated Linear MDP

Price fluctuates
(through Bernoulli Distribution)

American Put Option

Agent

Buy Not Buy

Dataset
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Simulated Linear MDP 

 Evaluation

 Compared to non robust algorithm (PEVI), R2PVI learns robust policy under all divergence measure

 Robust parameter 𝝀 serves as regularization to adjust the robustness of the policy

 𝝀 plays a similar role in d-RRMDP as inverse robust parameter 1/𝝆 in d-DRMDP
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American Put Option

 Evaluation

 When 𝑵 and 𝒅 are large, the computation cost of  DRPVI and DRVI-L increase rapidly

 The computation cost of R2PVI is as low as PEVI.

 R2PVI can achieve the same robust performance with DRPVI and DRVI-L
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Conclusion

 Contribution

 We propose a novel d-RRMDP framework and establish dynamic planning principles 

 We derive dual formulations of Q-functions under TV, KL, 𝝌𝟐 divergence, and admit their 

linear representations

 We design meta-algorithms, R2PVI, in our setting and provide specific applicable algorithms 

under TV, KL, 𝝌𝟐 divergence 

 We provide instance-dependent upper bounds of our algorithms with a general form

and then construct theoretical-lower bound to illustrate that the general form is intrinsic

 We conduct extensive experiment to illustrate robustness and time efficiency of our algorithms
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Thank you!
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