Robust Offline Reinforcement Learning with Linearly Structured Regularization and *f***-Divergence**

Speaker: Cheng Tang

Nov 23th, 2024

Tsinghua University

Introduction 1 **Problem Formulation** 2 Method 3 **Theoretical Analysis** 4 Experiment 5 Conclusion 6

(2)

Introduction

Date of outbreak

2014-08-18

2014-06-29

2014-05-10

Sim-to-real gap:

[1] Lindström C, Hess G, Lilja A, et al. Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 4461-4471.

[2] Bousmalis K, Levine S. Closing the simulation-to-reality gap for deep robotic learning[J]. Google Research Blog, 2017, 1.

[3] Liu Z, Clifton J, Laber E B, et al. Deep spatial q-learning for infectious disease control[J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28(4): 749-773.

Cheng Tang

R2PVI

Introduction

■ Distributionally Robust RL : learn more robust policy through Reinforcement Learning

• d-rectangular DRMDP: model the uncertainty in the dynamics and aim to achieve the

best performance under the most adversarial dynamics.

• The robust value function can be seen as the **worst** value function in an uncertainty set determined by probability divergence *D*

Motivation

- Drawbacks of d-rectangular DRMDP:
 - Needs strong assumption on dual variables
 - Existing algorithms rely on approximation to substitute the duality optimization, making it time consuming
 - Existing work consider mainly TV divergence geometry, leaving blanks for cases with KL and χ^2
- **RRMDP:** applying regularization penalty term measuring the uncertainty
 - Related work shows that the robust policy under RRMDP can be equivalent to DRMDP
 - The forfeit of uncertainty set constraint makes the dual problem easier, leading to potential improvement on computation efficiency and theoretical analysis

Content

(6)

Offline MDP (Markov Decision Process): MDP(S, A, H, P⁰, r)

- State *s*, action *a*, reward $r(s, a) \in [0, 1]$ (known), nominal kernel $P^0 = \{P_h^0\}_{h=1}^H$,
- Value function and Q-function:

$$V_h^{\pi}(s) = \mathbb{E}^{P^0} \bigg[\sum_{t=h}^{H} r_t(s_t, a_t) \Big| s_h = s, \pi \bigg], \qquad Q_h^{\pi}(s, a) = \mathbb{E}^{P^0} \bigg[\sum_{t=h}^{H} r_t(s_t, a_t) \Big| s_h = s, a_h = a, \pi \bigg].$$

• Offline dataset and Learning goal: given K trajectory $\{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau})\}_{h=1}^{H}$ and find policy $\hat{\pi}$ to minimize the Suboptimality gap: SubOpt $(\pi; x) = V_1^{\pi^*}(x) - V_1^{\pi}(x)$,

Cheng Tang

R2PVI

Tsinghua University

RRMDP (Robust Regularized Markov Decision Process): RRMDP(S, A, H, P⁰, r, λ, D, F)

- Regularized robust parameter λ , probability divergence *D*, feasible set of all perturbed transition kernels F
- Regularized robust value function and Q-function:

$$V_{h}^{\pi,\lambda}(s) = \inf_{P \in \mathcal{F}} \mathbb{E}^{P} \left[\sum_{t=h}^{H} \left[r_{t}(s_{t}, a_{t}) + \frac{\lambda D(P_{t}(|s_{t}, a_{t}) \| P_{t}^{0}(\cdot|s_{t}, a_{t})) \right]}{nominal \text{ kernel}} \right], \qquad \text{Penalty on divergence with nominal kernel}$$

$$Q_{h}^{\pi,\lambda}(s,a) = \inf_{P \in \mathcal{F}} \mathbb{E}^{P} \left[\sum_{t=h}^{H} \left[r_{t}(s_{t}, a_{t}) + \frac{\lambda D(P_{t}(\cdot|s_{t}, a_{t}) \| P_{t}^{0}(\cdot|s_{t}, a_{t})) \right]}{s_{h} = s, a_{h} = a, \pi} \right].$$

• Offline dataset and Learning goal: given K trajectory $\{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau})\}_{h=1}^{H}$ and find policy $\hat{\pi}$ to minimize the robust Suboptimality gap:

SubOpt
$$(\hat{\pi}, s_1, \lambda) := V_1^{\star, \lambda}(s_1) - V_1^{\hat{\pi}, \lambda}(s_1).$$

Optimal robust regularized value function

Cheng lang

Linear MDP (Markov Decision Process):

- Known feature mapping $\phi: s \times a \to R^d$, $\sum_i \phi_i(s, a) = 1$, $\phi_i(s, a) \ge 0$
- Linear reward function and nominal transition kernel class F

 $r_h(s,a) = \langle \boldsymbol{\phi}(s,a), \boldsymbol{\theta}_h \rangle, \ P_h^0(\cdot|s,a) = \langle \boldsymbol{\phi}(s,a), \boldsymbol{\mu}_h^0(\cdot) \rangle$

where $\{\boldsymbol{\theta}_h\}_{h=1}^H$ are known vectors with bounded norm $\|\boldsymbol{\theta}_h\|_2 \leq \sqrt{d}$ and $\{\boldsymbol{\mu}_h^0\}_{h=1}^H$ are unknown probability measure vectors over \mathcal{S} , i.e., $\boldsymbol{\mu}_h^0 = (\mu_{h,1}^0, \mu_{h,2}^0, \cdots, \mu_{h,d}^0), \ \mu_{h,i}^0 \in \Delta(\mathcal{S}), \forall i \in [d].$

■ Offline d-rectangular linear RRMDP (d-RRMDP)

- Regularized robust value function and Q-function (under linear setting): $V_{h}^{\pi,\lambda}(s) = \inf_{\mu_{t}\in\Delta(\mathcal{S})^{d}, P_{t}=\langle \phi, \mu_{t} \rangle} \mathbb{E}^{\{P_{t}\}_{t=h}^{H}} \left[\sum_{t=h}^{H} \left[r_{t}(s_{t}, a_{t}) + \lambda \langle \phi(s_{t}, a_{t}), \mathbf{D}(\mu_{t}||\mu_{t}^{0}) \rangle \right] \Big| s_{h} = s, \pi \right],$ $Q_{h}^{\pi,\lambda}(s,a) = \inf_{\mu_{t}\in\Delta(\mathcal{S})^{d}, P_{t}=\langle \phi, \mu_{t} \rangle} \mathbb{E}^{\{P_{t}\}_{t=h}^{H}} \left[\sum_{t=h}^{H} \left[r_{t}(s_{t}, a_{t}) + \lambda \langle \phi(s_{t}, a_{t}), \mathbf{D}(\mu_{t}||\mu_{t}^{0}) \rangle \right] \Big| s_{h} = s, a_{h} = a, \pi \right]$
- Optimal robust regularized value function and Q-function:

$$V_h^{\star,\lambda}(s) = \sup_{\pi} V_h^{\pi,\lambda}(s), Q_h^{\star,\lambda}(s,a) = \sup_{\pi} Q_h^{\pi,\lambda}(s,a).$$

Robust regularized Bellman Equation:

$$Q_{h}^{\pi,\lambda}(s,a) = r_{h}(s,a) + \inf_{\substack{\mu_{h} \in \Delta(\mathcal{S})^{d}, P_{h} = \langle \phi, \mu_{h} \rangle}} \left[\mathbb{E}_{s' \sim P_{h}(\cdot|s,a)} \left[V_{h+1}^{\pi,\lambda}(s') \right] + \lambda \langle \phi(s,a), \mathbf{D}(\mu_{h}||\mu_{h}^{0}) \rangle \right],$$
$$V_{h}^{\pi,\lambda}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q_{h}^{\pi,\lambda}(s,a) \right].$$

• This preposition shows the recurrence relationship of regularized robust value function

Existence of optimal policy

Proposition 3.3. Under the setting of *d*-rectangular linear RRMDP, there exists a deterministic and stationary policy π^* , such that for any $(h, s, a) \in [H] \times S \times A$,

$$V_h^{\pi^\star,\lambda}(s) = V_h^{\star,\lambda}(s), Q_h^{\pi^\star,\lambda}(s,a) = Q_h^{\star,\lambda}(s,a).$$
(3.7)

- The existence of optimal policy guarantees the solvable of d-RRMDP with greedy policy
- The closeness of linear function class ensures the establishment of the above propositions

Experiment

Linearity of Q-function

Proposition 4.1. Under Assumption 3.1, for any $(\pi, s, a, h) \in \Pi \times S \times A \times [H]$, we have

$$Q_{h}^{\pi,\lambda}(s,a) = \langle \phi(s,a), \theta_{h} + w_{h}^{\pi,\lambda} \rangle, \qquad (4.1)$$

where $w_{h}^{\pi,\lambda} = \left(w_{h,1}^{\pi,\lambda}, w_{h,2}^{\pi,\lambda}, \cdots, w_{h,d}^{\pi,\lambda}\right)^{\top} \in \mathbb{R}^{d}$, and $w_{h,i}^{\pi,\lambda} = \inf_{\mu_{h,i} \in \Delta(s)} \left[\mathbb{E}^{\mu_{h,i}} \left[V_{h+1}^{\pi,\lambda}(s)\right] + \lambda D(\mu_{h,i} \| \mu_{h,i}^{0})\right].$

Pessimism based algorithm

Algorithm 1 Robust Regularized Pessimistic Value Iteration (R2PVI)Step 1: estimate w_h^{λ} by solving dual problemAlgorithm 1 Robust Regularized Pessimistic Value Iteration (R2PVI)Require: Dataset D, Regularizer $\lambda > 0$ 1: init $\hat{V}_{H+1}^{\lambda}(\cdot) = 0$ 2: for episode $h = H, \dots, 1$ do3: Compute $\Delta_h \leftarrow \sum_{r=1}^{K} \phi(s_h^{\tau}, a_h^{\tau}) \phi(s_h^{\tau}, a_h^{\tau})^{\top} + \gamma \mathbf{I}$ 4: Obtain the parameter estimation \hat{w}_h^{λ} .5: Construct pessimism penalty $\Gamma_h(\cdot, \cdot)$ 5: Construct the pessimism penalty $\Gamma_h(\cdot, \cdot)$ 6: Estimate $\hat{Q}_h^{\lambda}(\cdot, \cdot) \in \min(\langle \phi(\cdot, \cdot), \theta_h + w_h^{\lambda} \rangle - \Gamma_h(\cdot, \cdot), H - h + 1)^+$.7: Construct $\pi_h(\cdot, \cdot) \leftarrow \arg max_{\pi_h}(\hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot))_{\mathcal{A}}$ and $\hat{V}_h^{\lambda}(\cdot) \leftarrow \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot)\rangle_{\mathcal{A}}$.

Cheng Tang

R2PVI

Tsinghua University

Dual form of TV

$$\inf_{\mu \in \Delta(S)} \mathbb{E}_{s \sim \mu} V(s) + \lambda D_{\mathrm{TV}}(\mu \| \mu^0) = \mathbb{E}_{s \sim \mu^0} [V(s)]_{\min_{s'}(V(s')) + \lambda}.$$

Close form solution

Specific applicable algorithm

• Obtain by least square regression:

$$\hat{\boldsymbol{w}}_{h}^{\lambda} = \operatorname*{argmin}_{\boldsymbol{w} \in R^{d}} \sum_{\tau=1}^{K} \left([\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha_{h+1}} - \boldsymbol{\phi}(s_{h}^{\tau}, a_{h}^{\tau})^{\top} \boldsymbol{w} \right)^{2} + \gamma \|\boldsymbol{w}\|_{2}^{2},$$

Algorithm 2 Robust Regularized Pessimistic Value Iteration under TV distance (R2PVI-TV
Require: Dataset
$$\mathcal{D}$$
, regularizer $\lambda > 0$, $\gamma > 0$ and parameter β
1: init $\hat{V}_{H+1}^{\lambda}(\cdot) = 0$
2: for episode $h = H, \dots, 1$ do
3: $\Lambda_h \leftarrow \sum_{\tau=1}^{K} \phi(s_h^{\tau}, a_h^{\tau})(\phi(s_h^{\tau}, a_h^{\tau}))^{\top} + \gamma \mathbf{I}$
4: $\alpha_{h+1} \leftarrow \min_{s \in \mathcal{S}}(\hat{V}_{h+1}^{\lambda}(s)) + \lambda$
5: $\hat{w}_h^{\lambda} \leftarrow \Lambda_h^{-1}(\sum_{\tau=1}^{K} \phi(s_h^{\tau}, a_h^{\tau})[\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha_{h+1}})$
6: $\overline{\Gamma}_h(\cdot, \cdot) \leftarrow \beta \sum_{i=1}^{a} \|\phi_i(\cdot, \cdot)\mathbf{1}_i\|_{\Lambda_h^{-1}}$
7: $\hat{Q}_h^{\lambda}(\cdot, \cdot) \leftarrow \min(\phi(\cdot, \cdot)^{\top}(\theta_h + \hat{w}_h^{\lambda}) - \Gamma_h(\cdot, \cdot), H - h + 1)^+$
8: $\hat{\pi}_h(\cdot|\cdot) \leftarrow \operatorname{argmax}_{\pi_h}\langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \pi_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ and $\hat{V}_h^{\lambda}(\cdot) \leftarrow \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot) \rangle_{\mathcal{A}}$

• Specifically designed penalty with $\beta_{TV}_{9:}^{8:}$

Dual form of KL

$$\inf_{\mu \in \Delta(S)} \mathbb{E}_{s \sim \mu} V(s) + \lambda D_{\mathrm{KL}}(\mu \| \mu^0) = -\lambda \log \mathbb{E}_{s \sim \mu^0} \left[e^{-\frac{V(s)}{\lambda}} \right].$$

Logarithm may generate error

Specific applicable algorithm

- **Obtain by least square regression:** Algorithm 3 Robust Regularized Pessimistic Value Iteration under KL distance (R2PVI-KL) $\hat{w}_h' = \operatorname*{argmin}_{w \in \mathbb{R}^d} \sum_{ au=1}^K \left(e^{-rac{\hat{v}_{h+1}^\lambda(s_{h+1}^ au)}{\lambda}} - \phi(s_h^ au, a_h^ au)^ op w
 ight)^2 + \gamma \|w\|_2^2.$ **Require:** Dataset \mathcal{D} , regularizer $\lambda > 0, \gamma > 0$ and parameter β 1: init $\hat{V}_{H+1}^{\lambda}(\cdot) = 0$ 2: for episode $h = H, \dots, 1$ do 3:
 $$\begin{split} & \mathbf{\Lambda}_{h} \leftarrow \sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, a_{h}^{\tau}) (\phi(s_{b}^{\tau}, a_{h}^{\tau}))^{\top} + \gamma \mathbf{I} \\ & \mathbf{\Psi}_{h}^{\prime} \leftarrow \mathbf{\Lambda}_{h}^{-1} \left(\sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, a_{h}^{\tau}) e^{-\frac{\tilde{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})}{\lambda}} \right) \\ & 5: \quad \hat{\mathbf{W}}_{h}^{\lambda} \leftarrow -\lambda \log \max\{ \hat{\mathbf{W}}_{h}^{\prime}, e^{-\tilde{H}/\lambda} \} \end{split}$$
 Clip the \widehat{W}'_h with lower bound o $\mathbb{E}_{s \sim \mu^0} e^{-\widehat{V}_{h+1}^{\lambda}(s)/\lambda}$ 6: $\Gamma_h(\cdot, \cdot) \leftarrow \beta \sum_{i=1}^d \|\phi_i(\cdot, \cdot) \mathbf{1}_i\|_{\Lambda_h^{-1}}$ 7: $\hat{Q}_h^{\lambda}(\cdot, \cdot) \leftarrow \min(\phi(\cdot, \cdot)^{\top}(\boldsymbol{\theta}_h + \hat{w}_h') - \Gamma_h(\cdot, \cdot), H - h + 1)^+$ 8: $\hat{\pi}_h(\cdot|\cdot) \leftarrow \operatorname{argmax}_{\pi_h} \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \pi_h(\cdot|\cdot) \rangle_{\mathcal{A}} \text{ and } \hat{V}_h^{\lambda}(\cdot) \leftarrow \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ 9: end for
- Specifically designed penalty with β_{KL}

Dual form of \chi^2

$$\inf_{\mu \in \Delta(S)} \mathbb{E}_{s \sim \mu} V(s) + \lambda D_{\chi^2}(\mu \| \mu^0) = \left\{ \sup_{\alpha \in [V_{\min}, V_{\max}]} \left\{ \mathbb{E}_{s \sim \mu^0} [V(s)]_{\alpha} - \frac{1}{4\lambda} \operatorname{Var}_{s \sim \mu^0} [V(s)]_{\alpha} \right\} \right\}$$

Specific applicable algorithm

• estimate
$$w_h^{\lambda}$$
 by solving dual problem

$$\hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha} = \left[\operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{\tau=1}^{K} ([\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha} - \phi(s_h^{\tau}, a_h^{\tau})^{\top}w)^2 + \gamma \|w\|_2^2 \right]_{[0,H]}^i,$$

$$\hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha}^2 = \left[\operatorname{argmin}_{w \in \mathbb{R}^d} \sum_{\tau=1}^{K} ([\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha}^2 - \phi(s_h^{\tau}, a_h^{\tau})^{\top}w)^2 + \gamma \|w\|_2^2 \right]_{[0,H]}^i,$$

$$\hat{v}_{h,i}^{\lambda} = \sup_{\alpha \in [(\hat{V}_{h+1}^{\lambda})\min, (\hat{V}_{h+1}^{\lambda})\max]} \left\{ \hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha} - \frac{1}{4\lambda}\widehat{\operatorname{Var}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha} \right\}$$

$$= \max_{\alpha \in [(\hat{V}_{h+1}^{\lambda})\min, (\hat{V}_{h+1}^{\lambda})\max]} \left\{ \hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha} + \frac{1}{4\lambda} (\hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha})^2 - \frac{1}{4\lambda}\hat{\mathbb{E}}^{\mu_{h,i}^0}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha}^2 \right\}$$

• Specifically designed penalty with β_{χ^2}

Algorithm 4 Robust Regularized Pessimistic Value Iteration under
$$\chi^2$$
 distance (R2PVI- χ^2)Require: Dataset \mathcal{D} , regularizer $\lambda > 0, \gamma > 0$ and parameter β 1: init $\hat{V}_{H+1}^{\lambda}(\cdot) = 0$ 2: for episode $h = H, \cdots, 1$ do3: $\Lambda_h \leftarrow \sum_{\tau=1}^{K} \phi(s_h^{\tau}, a_h^{\tau})(\phi(s_h^{\tau}, a_h^{\tau}))^{\top} + \gamma \mathbf{I}$ 4: $\hat{\mathbb{E}}_{h,i}^{\mu_{h,i}}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha} \leftarrow [\Lambda_h^{-1}(\sum_{\tau=1}^{K} \phi(s_h^{\tau}, a_h^{\tau})^{\top}[\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha})]_{[0,H]}$ 4: $\hat{\mathbb{E}}_{h,i}^{\mu_{h,i}^{0}}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha}^{2} \leftarrow [\Lambda_{h}^{-1}(\sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, a_{h}^{\tau})^{\top}[\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha}^{2})]_{[0,H^2]}$ 5: $\hat{\mathbb{E}}_{h,i}^{\mu_{h,i}^{0}}[\hat{V}_{h+1}^{\lambda}(s)]_{\alpha}^{2} \leftarrow [\Lambda_{h}^{-1}(\sum_{\tau=1}^{K} \phi(s_{h}^{\tau}, a_{h}^{\tau})^{\top}[\hat{V}_{h+1}^{\lambda}(s_{h+1}^{\tau})]_{\alpha}^{2})]_{[0,H^2]}$ 6: Estimate $\hat{w}_{h,i}^{\lambda}$ according to (4.9)7: $\Gamma_h(\cdot, \cdot) \leftarrow \beta \sum_{i=1}^{d} \|\phi_i(\cdot, \cdot)\|_{\Lambda_h^{-1}}^{-1}$ 8: $Q_h^{\lambda}(\cdot, \cdot) \leftarrow \min(\phi(\cdot, \cdot)^{\top}(\theta_h + \hat{w}_h^{\lambda}) - \Gamma_h(\cdot, \cdot), H - h + 1)^+$ 9: $\hat{\pi}_h(\cdot|\cdot) \leftarrow \operatorname{argmax}_{\pi_h} \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \pi_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ and $\hat{V}_h^{\lambda}(\cdot) \leftarrow \langle \hat{Q}_h^{\lambda}(\cdot, \cdot), \hat{\pi}_h(\cdot|\cdot) \rangle_{\mathcal{A}}$ 10: end for

We provide Instance-dependent upper bound for our algorithms:

Theorem 5.2. Under Assumption 3.1, for any $\delta \in (0,1)$, if we set $\gamma = 1$ and $\Gamma_h(s,a) = \beta \sum_{i=1}^d \|\phi_i(\cdot,\cdot)\mathbf{1}_i\|_{\mathbf{\Lambda}_h^{-1}}$ in Algorithm 1,

- (TV) $\beta = 16Hd\sqrt{\xi_{\text{TV}}}$, where $\xi_{\text{TV}} = 2\log(1024Hd^{1/2}K^2/\delta)$;
- (KL) $\beta = 16d\lambda e^{H/\lambda} \sqrt{(H/\lambda + \xi_{\text{KL}})}$, where $\xi_{\text{KL}} = \log(1024d\lambda^2 K^3 H/\delta)$;
- $(\chi^2) \ \beta = 8dH^2(1+1/\lambda)\sqrt{\xi_{\chi^2}}$, where $\xi_{\chi^2} = \log(192K^5H^6d^3(1+H/2\lambda)^3/\delta)$,

then with probability at least $1 - \delta$, for all $s \in S$, the suboptimality of Algorithm 1 satisfies:

SubOpt
$$(\hat{\pi}, s, \lambda) \leq 2\beta \left[\sup_{P \in \mathcal{U}^{\lambda}(P^{0})} \sum_{h=1}^{H} \mathbb{E}^{\pi^{*}, P} \left[\sum_{i=1}^{d} \|\phi_{i}(s, a) \mathbf{1}_{i}\|_{\Lambda_{h}^{-1}} |s_{1} = s \right] \right].$$

 $\Phi(\Lambda_{h}^{-1}, s)$: uncertainty function

• The upper bound relies on a novel uncertainty function

We further establish information-theoretic lower bound to illustrate the necessity of $\Phi(\Lambda_h^{-1}, s)$

Theorem 6.1. Given a regularizer λ , dimension d, horizon length H and sample size $K > \max\{\tilde{O}(d^6), \tilde{O}(d^3H^2/\lambda^2)\}$, there exists a class of d-rectangular linear RRMDPs \mathcal{M} and an offline dataset \mathcal{D} of size K such that for all $s \in S$ and any divergence D among $D_{\text{TV}}, D_{\text{KL}}$ and D_{χ^2} , with probability at least $1 - \delta$, we have $\inf_{\hat{\pi}} \sup_{M \in \mathcal{M}} \operatorname{SubOpt}(M, \hat{\pi}, s, \lambda, D) \geq c \cdot \Phi(\Lambda_h^{-1}, s)$, where c is a universal constant.

The construction of hard instance

- The nominal environment is constructed by inserting an error into the environment with two absorbing states
- The perturbed environment resembles the nominal kernel besides a controllable perturbation

(a) The nominal environment.

(b) The perturbed environment under time step h.

Comparison of the Suboptimality gap with dataset coverage

Algorithm	Setting	Robust	Divergence	Coverage	Suboptimality gap
DRPVI	DRMDP	ρ	\mathbf{TV}	full	$ ilde{O}(d^{3/2}H^2K^{-1/2})$
DROP	DRMDP	ρ	\mathbf{TV}	robust partial	$ ilde{O}(d^{3/2}H^2K^{-1/2})$
P2MPO (TV)	DRMDP	ρ	\mathbf{TV}	robust partial	$ ilde{O}(d^2H^2K^{-1/2})$
R2PVI-TV	RRMDP	λ	\mathbf{TV}	regularized partial	$ ilde{O}(d^2H^2K^{-1/2})$
DRVI-L	DRMDP	ρ	KL	robust partial	$ ilde{O}(\sqrt{eta}e^{H/eta}d^2H^{3/2}K^{-1/2})^\star$
P2MPO (KL)	DRMDP	ρ	KL	robust partial	$ ilde{O}(e^{H/eta} d^2 H^2 ho^{-1} K^{-1/2})^{\star}$
R2PVI-KL	RRMDP	λ	KL	regularized partial	$ ilde{O}(\sqrt{\lambda}e^{H/\lambda}d^2H^{3/2}K^{-1/2})$
R2PVI- χ^2	RRMDP	λ	χ^2	regularized partial	$ ilde{O}(d^2 H^3 (1+\lambda^{-1}) K^{-1/2})$

* The * denotes that the result requires an additional assumption on the KL dual variable, which is not required in **R2PVI**

- For TV divergence, our algorithm achieves nearly same suboptimality gap with SOTA
- For KL divergence, our algorithm needs no extra assumption to guarantee the closeness form solution
- For χ^2 divergence, we are the first to give algorithms under linear MDP setting with χ^2 divergence

We want to explore:

- The robustness of R2PVI when facing adversarial dynamics
- The role of regularizer λ in determining the robustness of R2PVI
- The computation cost of R2PVI compared to other robust algorithms

Baselines

Method	PEVI	DRPVI	DRVI-L	R2PVI (ours)
Framework	MDP	d-DRMDP	d-DRMDP	d-RRMDP
Divergence	/	TV	KL	$TV/KL/\chi^2$

* We don't compare DROP and P2MPO mentioned in the upper bound due to the lack of experiment and code base in such works.

Cheng Tang

R2PVI

Experiment

■ Task settings

Cheng Tang

Simulated Linear MDP

Evaluation

- Compared to non robust algorithm (PEVI), R2PVI learns robust policy under all divergence measure
- Robust parameter λ serves as regularization to adjust the robustness of the policy
- λ plays a similar role in d-RRMDP as inverse robust parameter $1/\rho$ in d-DRMDP

Evaluation

- When *N* and *d* are large, the computation cost of DRPVI and DRVI-L increase rapidly
- The computation cost of R2PVI is as low as PEVI.
- **R2PVI** can achieve the same robust performance with DRPVI and DRVI-L

Contribution

- We propose a novel d-RRMDP framework and establish dynamic planning principles
- We derive dual formulations of Q-functions under TV, KL, χ^2 divergence, and admit their linear representations
- We design meta-algorithms, R2PVI, in our setting and provide specific applicable algorithms under TV, KL, χ^2 divergence
- We provide instance-dependent upper bounds of our algorithms with a general form $\beta \sup_{P \in \mathcal{U}^{\lambda}(P^{0})} \sum_{h=1}^{H} \mathbb{E}^{\pi^{*},P} \Big[\sum_{i=1}^{d} \|\phi_{i}(s,a)\mathbf{1}_{i}\|_{\Lambda_{h}^{-1}} \|s_{1} = s \Big],$

and then construct theoretical-lower bound to illustrate that the general form is intrinsic

• We conduct extensive experiment to illustrate robustness and time efficiency of our algorithms

Thank you!

